Intramolecular hydrogen-bonding effects on structural and electronic properties of pyrrole-furan derivatives: a density functional calculation

نویسندگان

چکیده

Structural, electronic and photovoltaic properties of pyrrole-furan copolymer incorporated with several electron-donating groups (EDGs) electron-withdrawing (EWGs) were investigated using density functional theory (DFT) time-dependent (TD-DFT). The intramolecular hydrogen bonding between the N…H site pyrrole O furan enhances a coplanar structure derivatives. substituted -NO2 shows significantly low-lying HOMO −6.01 eV associated smallest HOMO–LUMO gap value 2.48 eV, revealed an enhancement open-circuit voltage (Voc). high linear relationship HOMO, LUMO, IP, EA as resonance effect is observed. According to reorganization energy, functionalized –NHCH3, –CH3, –SCH3, –CN, –CF3, –Cl identified donor materials. For optical properties, highest absorption spectrum was found for –CF3 substituent, while red-shifted spectra exhibited from others As results, (Py-co-Fu)4-CN potential material application.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electronic Properties of Hydrogen Adsorption on the Silicon- Substituted C20 Fullerenes: A Density Functional Theory Calculations

The B3LYP/6-31++G** density functional calculations were used to obtain minimum geometries and interaction energies between the molecular hydrogen and nanostructures of fullerenes, C20 (cage), C20 (bowl), C19Si (bowl, penta), C19Si (bowl, hexa). The H2 molecule is set as adsorbed in the distance of 3Å at vertical position from surface above the pentagonal and hexagonal sites of nanostructures. ...

متن کامل

Density Functional Studies on Crystal Structure and electronic properties of Potassium Alanate as a candidate for Hydrogen storage

Potassium Alanate is one of the goal candidates for hydrogen storage during past decades. In this report, initially the Density Functional Theory was applied to simulate the electronic and structural characteristic of the experimentally known KAlH4 complex hydride. The relaxation of unit cell parameters and atomic positions was performed until the total residual force reduced less than 0.001ev ...

متن کامل

A Study of Intramolecular Hydrogen Bonding in Levoglucosan Derivatives.

Organofluorine is a weak hydrogen-bond (HB) acceptor. Bernet et al. have demonstrated its capability to perturb OH···O intramolecular hydrogen bonds (IMHBs), using conformationally rigid carbohydrate scaffolds including levoglucosan derivatives. These investigations are supplemented here by experimental and theoretical studies involving six new levoglucosan derivatives, and complement the findi...

متن کامل

electronic properties of hydrogen adsorption on the silicon- substituted c20 fullerenes: a density functional theory calculations

the b3lyp/6-31++g** density functional calculations were used to obtain minimum geometries and interaction energies between the molecular hydrogen and nanostructures of fullerenes, c20 (cage), c20 (bowl), c19si (bowl, penta), c19si (bowl, hexa). the h2 molecule is set as adsorbed in the distance of 3å at vertical position from surface above the pentagonal and hexagonal sites of nanostructures. ...

متن کامل

Conventional and Unconventional Intramolecular Hydrogen Bonding in some Beta-diketones

This study presents our view of unconventional and conventional intramolecular hydrogen bonds (HBs) for some beta-diketones theoretically and experimentally. According to our results, the groups such as Phenyl and t-But in beta positions increase and CF3 group decrease IHB strength, respectively. For better understanding of the substitution effects, the compounds with similar and different subs...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Optical and Quantum Electronics

سال: 2021

ISSN: ['1572-817X', '0306-8919']

DOI: https://doi.org/10.1007/s11082-021-02947-3